block1

Friday, August 10, 2012

Chuyên đề: Nguyên hàm-Tích phân


CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
Phương pháp đổi biến số:
Bài toán : Tính I=\int\limits_a^b {f(x)dx}
Nếu
  • Hàm x=u(t) có đạo hàm liên tục trên đoạn \left[{\alpha;\beta}\right]
  • Hàm hợp f(u(t)) được xác định trên \left[{\alpha;\beta}\right].
  • u(\alpha)=a,u(\beta)=b
thì I=\int\limits_a^{b}f(x)dx=\int\limits_{\alpha}^{\beta}{f(u(t))u'(t)dt}
Ví dụ:  Tính tích phân sau:a) I=\int\limits_0^1{x^2\sqrt{x^3+5}dx}
b) J=\int\limits_0^{\frac{\pi }{2}} {\left({\sin^4 x+1}\right)\cos x}dx
Hướng dẫn giải:
a)
  •  Đặt t=x^3+5 \Rightarrow dt=3x^2dx
                     \Leftrightarrow  \frac{1}{3}dt=x^2dx
  • Đổi cận:
                          x=0 \Rightarrow t=5
                          x=1 \Rightarrow t=6
          I=\int\limits_0^1{x^2\sqrt{x^3+5}dx}=\frac{1}{3}\int\limits_5^6(t)^{\frac{1}{2}}=\frac{1}{3}\frac{(t)^{\frac{1}{2}+1}}{\frac{1}{2}+1}\left| \begin{array}{l} 6 \\ 5 \end{array}\right.=\frac{2}{9}t\sqrt{t}\left| \begin{array}{l} 6 \\ 5 \end{array}\right.=\frac{4}{3}\sqrt{6}-\frac{10}{9}\sqrt{5}
b) 
  • Đặt t=sinx \Rightarrow dt=cosxdx
  •  Đổi cận:
                 x=0 t=0
                 x=\frac{\pi}{2} t=1
                 I=\int\limits_0^{\frac{\pi}{2}}(t^4+1)dt={\frac{1}{5}t^{5}+t}\left| \begin{array}{l} 1 \\ 0 \end{array} \right.=\frac{6}{5}
Ví dụ 2: Tính các tích phân sau:
a) \int\limits_0^4{\sqrt{4-x^2}}dx
b) \int\limits_0^1\frac{dx}{1+x^2}
Hướng dẫn giải:   a)
  • Đặt x=2sintt\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]
           \Rightarrow dx=2costdt
  • Đổi cận:
                x=0\Rightarrowt=0
                x=4\Rightarrowt=\frac{\pi}{2}
                \int\limits_0^4{\sqrt{4-x^2}}dx=\int\limits_0^{\frac{\pi}{2}}{\sqrt{4-4sin^{2}t}}.2costdt=4\int\limits_0^{\frac{\pi}{2}}{\cos^{2}tdt}=\pi
b)
  •  Đặt x=tant t\in\left({-\frac{\pi}{2};\frac{\pi}{2}}\right)
Ta có x=tant\Rightarrowdx=\frac{dt}{\cos^{2}t}
\Rightarrow \int\limits_0^1{\frac{dx}{1+x^2}}=\int\limits_0^{\frac{\pi}{4}}{\frac{1}{{1+tan^{2}t}}}.\frac{{dt}}{{\cos^{2}t}}
=\int\limits_0^{\frac{\pi}{4}}{dt}=t\left| \begin{array}{l} \frac{\pi}{4} \\ 0 \end{array} \right.=\frac{\pi }{4}.
Chú ý:
Trong thực tế chúng ta thường gặp những dạng tích phân trên dưới dạng tổng quát.
Nếu hàm số dưới dấu tích phân có chứa căn dạng \sqrt{a^2+x^2},\sqrt{a^2-x^2} và \sqrt {x^2-a^2}
(Trong đó a là hằng số dương) mà không có cách biến đổi nào khác thì ta biến đỏi sang dạng lượng giác để làm mất căn thức , Cụ thể :
  • Với: \sqrt {a^2-x^2} đặt x=a\sin t,t\in\left[{-\frac{\pi}{2};\frac{\pi}{2}}\right]  
                 hoặc x=acost,t \in \left[{0;\pi}\right]
  • Với \sqrt{a^2+x^2} đặt x=atant,t\in\left({-\frac{\pi}{2};\frac{\pi}{2}}\right)
               hoặc x=acott,t\in\left({0;\pi}\right)
  • Với \sqrt {x^2-a^2} đặt x=\frac{a}{\sin t},t\in\left[{-\frac{\pi}{2};\frac{\pi}{2}}\right]\backslash\left\{0\right\}
               hoặc x=\frac{a}{{\cos t}};t\in\left[{0;\pi}\right]\backslash\left\{{\frac{\pi}{2}}\right\}
Bài tập vận dụng:
Tính các tích phân sau:
a) \int\limits_0^1 {\left( {2x+1} \right)^5dx}            b) \int\limits_e^{e^2} {\frac{dx}{xln x}}
c) \int\limits_1^2{\frac{{dx}}{{(2x-1)^2}}}                d) \int\limits_0^1{\frac{4x+2}{x^2+x+1}}dx
d) \int\limits_{\frac{\pi }{3}}^{\frac{{2\pi }}{3}}{\cos (3x-\frac{{2\pi }}{3})dx}
Đáp án: a)60\frac{2}{3}; b)ln2 ;c)\frac{1}{3} ; d) 3ln2  ;e)-\frac{\sqrt{3}}{3}
Phương pháp tích phân từng phần
Nếu u(x) và v(x) có đạo hàm liên tục trên đoạn [a;b] thì:
\int\limits_a^b{u(x)v'(x)dx}=(u(x)v(x))\left| \begin{array}{l} b \\ a \end{array} \right.-\int\limits_a^b{v(x)u'(x)dx}
hay \int\limits_a^b{udv}=uv\left| \begin{array}{l} b \\ a \end{array}\right.-\int\limits_a^b{vdu}
Ví dụ: Tính các tích phân sau:
                          \int\limits_1^e {x\ln xdx}
Hướng dẫn :
  •  Đặt : \left\{\begin{array}{l} u=lnx \\ dv=xdx \end{array} \right.
 \Rightarrow  \left\{\begin{array}{l} du=\frac{dx}{x} \\ v=\frac{x^2}{2} \end{array} \right.
 \int\limits_{1}^{e}xlnxdx=\frac{x^2}{2}lnx\left|\begin{array}{l} e \\ 1 \end{array}\right.-\frac{1}{2}\int\limits_{1}^{e}xdx
 =\frac{e^2}{2}-\frac{x^2}{4}\left|\begin{array}{l} e \\ 1 \end{array}\right.=\frac{e^2+1}{4}
 Chú ý : Có ba dạng tích phân thường áp dụng tích phân từng phần.
  • Nếu tính tích phân \int\limits_{\alpha}^{\beta}P(x)Q(x)dx mà P(x) là các đa thức còn Q(x)là một trong các hàm số e^{ax},cosax,sinax
Đặt : \left\{\begin{array}{l} u=P(x) \\ dv=Q(x)dx \end{array} \right. \Rightarrow  \left\{\begin{array}{l} du=P'(x)dx \\ v=\int{Q(x)dx}\end{array} \right.
  • Nếu tính tích phân \int\limits_{\alpha}^{\beta}P(x)Q(x)dx mà P(x) là các đa thức còn Q(x)là hàm số ln(ax)
Đặt : \left\{\begin{array}{l} u=Q(x) \\ dv=P(x)dx \end{array} \right.\Rightarrow  \left\{\begin{array}{l} du=Q'(x)dx \\ v=\int{P(x)dx}\end{array} \right.
  • Nếu tính tích phân I=\int\limits_{\alpha}^{\beta}e^{ax}cosbxdx hoặc J=\int\limits_{\alpha}^{\beta}e^{ax}sinbxdx
Đặt :\left\{\begin{array}{l} u=e^{ax} \\ dv=cosbxdx \end{array} \right.\Rightarrow  \left\{\begin{array}{l} du=ae^{ax}dx \\ v=\frac{1}{b}sinbx \end{array} \right.
Hoặc đặt :\left\{\begin{array}{l} u=e^{ax} \\ sinbxdx \end{array} \right.\Rightarrow  \left\{\begin{array}{l} du=ae^{ax}dx \\ v=-\frac{1}{b}cosbx \end{array} \right.
Trong trường hợp này ta phải tích tích phân hai lần sau đó trở lại tích phân ban đầu.Từ đó suy ra kết quả tích phân cần tính.

Xem thêm: 
Công thức tính tích phân và Một số bài tập về tích phân



About ""

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus suscipit, augue quis mattis gravida, est dolor elementum felis, sed vehicula metus quam a mi. Praesent dolor felis, consectetur nec convallis vitae.

Post a Comment

Breaking

 
Copyright © 2013 Thủ thuật Online